Friendess, Inc.

柏楚 CypCutPro 激光切割控制软件

用户手册

版本: 7.1

欢迎

感谢您使用柏楚 CypCutPro 激光切割控制软件!

『柏楚 CypCutPro 激光切割控制软件』(以下简称 CypCutPro)是一套用于平面激光切割的软件,包含激光切割工艺处理、常用排样功能和激光加工控制。主要功能包括图形处理,参数设置,自定义切割过程编辑,排样,路径规划,模拟,以及切割加工控制。

CypCutPro 软件必须配合控制卡使用,才能进行实际的加工控制。

当 CypCutPro 运行在一台没有控制卡的电脑上时,将进入演示模式,您可以正常使用除加工控制以外的其他所有功能。因此 CypCutPro 可安装在独立的笔记本上用于加工前的设计。

请注意,本用户手册仅作为 CypCutPro 软件的主程序的操作说明,随 CypCutPro 软件而 安装的其他工具软件,包括平台配置工具,请参考其他手册或与我们联系。

本文档是基于 CypCutPro 版本 7. 1.2310 而撰写的,由于软件功能的不断更新,您所使用的 CypCutPro 软件在某些方面可能与本手册的陈述有所出入,在此谨表歉意。

如您在使用过程中有任何的疑问或建议,欢迎您随时与我们联系!

机床的运行及激光切割效果与被切割的材料、所使用的激光器、所使用的气体、气压以及您所设置的各项参数有直接的关系,请根据您的切割工艺要求严肃谨慎地设置各项参数!

不恰当的参数设置和操作可能导致切割效果下降、激光头或其他机床部件损坏甚至人身伤害,CypCutPro激光切割控制系统已尽力提供了各种保护措施,激光设备制造商及最终用户应当尽量遵守操作规程,避免伤害事故的发生。

柏楚电子不承担由于使用本手册或本产品不当而导致的任何直接 的、间接的、附带的或相应产生的损失和责任!

目录

欢迎		1
目录		2
— ,	快速入门	5
1.1	功能特点	5
1.2	获取和安装软件	6
1.3	开始使用	6
	1.3.1 桌面快捷方式	6
	1.3.2 用户界面	7
	1.3.3 工具栏	8
	1.3.4 文件菜单	9
1.4	操作流程	10
	1.4.1 导入图形	10
	1.4.2 预处理	11
	1.4.3 工艺设置	11
	1.4.4 切割路径规划	12
	1.4.5 加工前检查	12
	1.4.6 实际加工	12
_,	图形操作	14
2.1	图形显示效果	14
2.2	选择图形	15
2.3	几何变换	15
	2.3.1 尺寸修改	16
	2.3.2 交互式几何变换	17
	2.3.3 快速平移和复制	18
2.4	坐标和参数输入	18
2.5	自动吸附	18
2.6	图形绘制	19
	2.6.1 标准图形绘制	19
	2.6.2 文字输入	19
	2.6.3 标准零件	20
2.7	图形优化	20
	2.7.1 曲线平滑	20
	2.7.2 曲线分割	21
	2.7.3 去除重复线	21
	2.7.4 去除小图形	21

		2.7.5 合并相连线	21
		2.7.6 切碎	22
	2.8	视图	22
三、		工艺设置和工具	23
	3.1	引入引出线	23
		3.1.1 区分内外模与阳切/阴切	23
		3.1.2 自动引入引出线	23
		3.1.3 手工设置引入线	25
		3.1.4 检查引入引出线	25
		3.1.5 过切、留缺口、封口和多圈	25
	3.2	割缝补偿	25
	3.3	微连	26
	3.4	冷却点	27
	3.5	环切	27
	3.6	倒圆角/释放角	28
	3.7	群组	28
		3.7.1 群组的排序	29
		3.7.2 群组的加工	29
	3.8	飞切	29
		3.8.1 直线飞行切割	29
		3.8.2 圆弧飞行切割	30
		3.8.3 跑道形飞切	31
		3.8.4 一笔画飞切	31
	3.9	共边	32
		3.9.1 共边自动吸附	33
		3.9.2 带补偿的共边	33
	3.10	桥接	34
	3.11	阵列	34
		3.11.1 矩形阵列	34
		3.11.2 交互式阵列	35
		3.11.3 环形阵列	35
		3.11.4 布满排样	36
	3.12	切断线	37
	3.13	包络线	37
	3.14	测量	38
	3.15	批量修改	39
	3.16	工艺参数	41
		3.16.1 参数说明	42

	3.16	5.2 实时调节功率/频率	43
	3.16	5.3 图层映射	44
	3.16	5.4 引线工艺	44
	3.17	排样	45
	3.17	7.1 实现排样	46
	3.17	7.2 排样报告	47
	3.17	7.3 排样自动切换至下一张	48
	3.18	排序和路径规划	48
	3.18	3.1 次序预览	49
	3.18	3.2 手工排序	50
	3.18	3.3 智能排序	50
	3.18	3.4 分区排序	51
四、	加工	「控制	52
	4.1	坐标系	52
	4.1.	1 机械坐标系	52
	4.1.	2 程序坐标系	53
	4.1.	3 发生异常后寻找零点	53
	4.2	报警	54
	4.3	手动测试	54
	4.4	软限位保护	55
	4.5	走边框	56
	4.6	加工和空走	56
	4.7	停止、暂停和继续	57
	4.8	断点记忆	58
	4.9	从任意位置开始加工	58
	4.10	全局参数	58
五、	数控	· 空辅助功能	61
	5.1	模拟加工	61
	5.2	寻边	61
	5.3	一键切断	63
	5.4	PLC 过程	63
	5.5	任务	63
	5.6	回原点	63
	5.7	干涉仪	
	5.8	标定	
	5.9	快捷键	

一、快速入门

1.1功能特点

- 支持 AI、DXF、PLT、Gerber、LXD 等图形数据格式,接受 Master Cam、Type3、文泰等软件生成的国际标准 G 代码。
- 打开/导入 DXF 等外部文件时,自动进行优化,包括:去除重复线、合并相连线、去除极小图形、自动区分内外模和排序等。上述每一项功能可自定义,也可手动执行。
- □ 支持常用编辑排版功能,包括缩放、平移、镜像、旋转、对齐、复制、组合等。
- □ 以所见即所得的方式设置引入引出线、割缝补偿、微连、桥接、阴阳切、封口等。
- 自动区分内外模,并根据内外模确定割缝补偿方向,进行引线检查等。
- □ 支持曲线分割、合并,曲线平滑,文字转曲线,零件合并、打散等。
- □ 省时省力的自动排样功能,可自动共边、生成余料。
- 通过多种阵列方式可轻松将板材布满。
- □ 灵活多样的自动排序和手工排序功能,支持通过群组锁定群组内部图形加工次序。
- 独有的加工次序浏览功能,比模拟更加交互式的查看加工次序。
- □ 一键设置飞行切割路径, 让加工事半功倍。
- 支持分段穿孔、渐进穿孔、预穿孔、分组预穿孔,支持对穿孔过程和切割过程设置单独的激光功率、频率、激光形式、气体类型、气压、峰值电流、延时、跟随高度等。
- 实时频率与功率曲线编辑,并可设置慢速起步相关参数。
- □ 强大的材料库功能,允许将全部工艺参数保存以供相同材料再次使用。
- □ 加工断点记忆,断点前进后退追溯;允许对部分图形加工。
- 支持停止和暂停过程中定位到任意点,从任意位置开始加工。
- □ 同一套软件支持圆管切割和平面切割,编程方式完全相同;支持相贯线切割。
- **甘** 支持定高切割和板外跟随¹。
- □ 支持多种寻边方式,定位精准。
- □ 强大的扩展能力, 多达 30 余个 PLC 过程编辑, 50 多项可编程过程²
- □ 可编程输入输出口,可编程报警输入²。
- □ 支持通过无线手持盒、以太网对系统进行远程控制³。
- 支持无感穿孔、无痕微连

¹此项功能需要调高器配合。

²此项功能受密码保护,有权限的技术人员和设备制造商方可操作。

³需要相应的选配件支持。

1.2 获取和安装软件

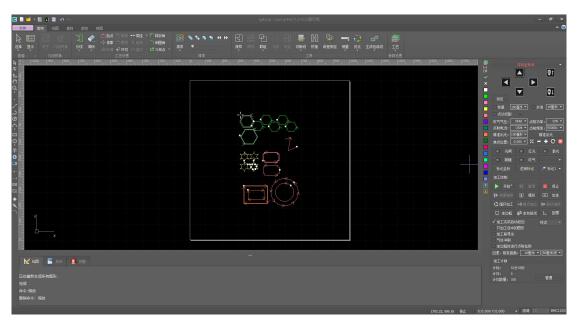
您可以联系供应商或客服人员获得软件安装程序,也可以直接在柏楚官网下载安装程序。

安装之前,请检查您的系统是否满足以下推荐的配置要求:

- ₩ Win7 及以上操作系统。
- **□** 13 及以上的 CPU。
- □ 至少 4Gb 内存。
- □ 15 英寸以上 VGA 显示器,分辨率 1280*1024 以上,推荐 32 位真彩色显示。
- 至少2个USB接口。
- 如果您使用的操作系统是基于 Vista 的(包括 Windows Vista, Windows 7, Windows 8, Windows 2008 Server),为避免可能的错误,请尽量使用管理员方式运行。

检查完成之后可以开始安装软件,直接运行安装程序即可。在基于Vista的操作系统上安装程序需要有管理员权限才能运行。

为避免安装过程中程序文件被修改,保证所有驱动正常安装,请关闭系统上的360安全卫士和杀毒软件。请注意:360安全卫士并不能确保电脑上没有病毒,如果电脑已被病毒感染,而360安全卫士正在运行,可能会提示CypCutPro为病毒,进而导致CypCutPro无法正常运行。


1.3开始使用

1.3.1 桌面快捷方式

安装之后桌面上将出现右图所示的图标 控制软件。 双击可运行 CypCutPro 激光切割

1.3.2 用户界面

界面正中央黑底的为**绘图板**,其中白色带阴影的外框表示机床幅面,并有网格显示。 网格与绘图区上方和左侧的标尺会随视图放大缩小而变化,为绘图提供参考。

界面正上方从上到下依次是**标题栏、菜单栏**和工具栏,其中工具栏以非常明显的大图标分组方式排列,大部分常用功能都可以在这里找到。菜单栏包括"文件"菜单和5个工具栏菜单"常用"、"绘图"、"排样"、"数控"和"视图",选择这5个菜单可以切换工具栏的显示。标题栏左侧有一个称为"快速访问栏"的工具栏,用于快速新建、打开和保存文件,撤销和重做也可以通过这里快速完成。

界面左侧是"**绘图工具栏**",在后续说明中我们有时直接称为"左侧工具栏";这里提供了基本的绘图功能,其中前面 5 个按钮用于切换绘图模式,包括选择、节点编辑、次序编辑、拖动和缩放;下面的其他按钮分别对应相应图形,单击它们就可以在绘图板上插入一个新图形。最下方有三个快捷键,分别是居中对齐、炸开所选图形以及倒圆角。

绘图区右侧是"**工艺工具栏**",在后续说明中我们有时直接称为"右侧工具栏",包括一个"工艺"按钮和 19 个方块按钮;单击"工艺"按钮将打开"工艺"对话框,可以设置大部分的工艺参数;15 个颜色方块按钮,每一个对应一个图层,白色为背景图层,选中图形时单击它们表示将选中图形移动到指定的图层;没有选中图形时单击它们表示设置下次绘图的默认图层。"X"方块可以将图形设置为不加工图层,"√"方块可以重新将不加工图层设为加工图层。白色颜色的方块代表背景图层,最后两个图层分别为最先加工及最后加工图层。

界面下方包括三个滚动显示的丝带文字窗口。左边的为"绘图窗口",所有绘图指令的相关提示或输入信息在这里显示;中间的窗口为"系统窗口",除绘图之外的其他系统消息将在这里显示,每一条消息都带有时间标记,并根据消息的重要程度以不同颜色显示,包括提示、警告、错误等。右边的窗口为"报警窗口",所有的报警信息将在这里以红色背景、白色文字显示。



界面最底部是**状态栏**,根据不同的操作显示不同的提示信息。状态栏的左侧是已绘制的加工图形的基本信息,状态栏的右侧包括几个常用信息,包括鼠标所在位置、加工状态、激光头所在位置。后面一个微调距离参数,用于使用方向键快速移动图形,最后显示的是控制卡的型号。

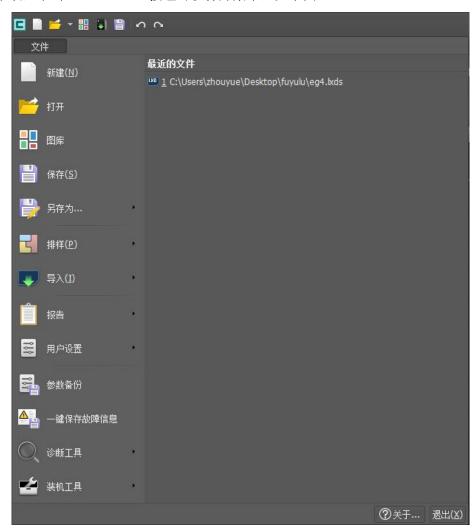
界面右侧的矩形区域被称为"**控制台**",大部分与控制相关的常用操作都在这里进行。 从上到下依次是坐标系选择、手动控制、加工控制、加工选项和加工计数。

1.3.3 工具栏

CypCutPro 的工具栏使用了一种被称为 Ribbon(丝带)的风格样式,将常用的功能分栏分区放置,并且使用了许多大尺寸的按钮方便操作。下图帮助您了解这种新型工具栏:

整个工具栏被分为 5 个"分页",通过"常用"、"绘图"、"排样"、"数控"和"视图"5 个菜单来选择。当选中各项菜单时,会出现与所选内容相关的分页;在加工时将会出现"正在加工"分页,并且在停止之前不能切换到其他分页。

每一分页的工具栏又按照功能分类排列在多个"分栏"内,例如"查看"、"几何变换"等;一般分栏的第一个按钮都是大尺寸的;有些分栏的右下角会有一个小按钮"■",称为"扩展按钮",按下该按钮可以打开一个相关的对话框。


请注意,部分大尺寸按钮的下方带有一个小三角,称为"下拉按钮",按下此按钮会出现一个与此按钮相关的"下拉菜单",提供更丰富的操作选项。鼠标移动到这种按钮上方时会显示两个明显不同的矩形,按下按钮的上半部分是直接执行按钮对应的功能,而按下按钮的下半部分则是打开一个菜单。

如果您之前使用过 Office 2007、Windows 7 或其他使用 Ribbon 风格的程序,您可能已经非常熟悉这种排列。即便第一次使用也没有关系,我们相信您会很快喜欢上这种风格的。

1.3.4 文件菜单

在工具栏左上角有一个比较特殊的菜单,称为"文件菜单",它包含一些与文件相关的菜单项,单击"^{文件}"按钮可以打开菜单,如下图:

请注意到菜单右侧列出了最近使用过的文件,其中由 CypCutPro 保存的文件带有一个 " 图标,这是为**了方便您找到上次已经设计好的文件**。

菜单中的"图库"可以浏览最近打开文件的缩略图,便于快速查找打开文件。

菜单中的"另存为"可在右侧选择将文件保存为 lxds 或 dxf 格式。

菜单中的"导入"可用于在不清除绘图板现有图形的基础上,再导入一个文件到绘图板。如果您只是想打开一个外部文件,直接使用"打开"即可

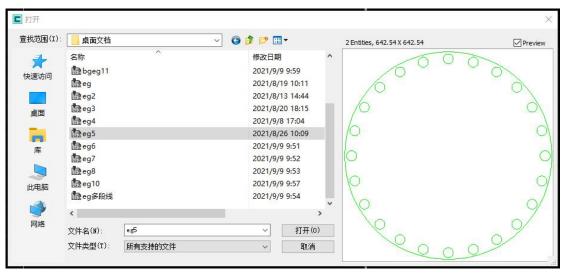
菜单中的"报告"可导出加工报告单,排样报告单和生产报告单。

菜单"用户设置"用于设置一些与使用习惯相关的参数。

菜单"参数备份"用于将所有参数备份为一个压缩文件,以方便恢复参数。

菜单"一键保存故障信息"用于将异常情况进行备份,以方便问题的排查。

菜单"诊断工具"可以打开运动监控、IO 监控、BCS100E 监控,用于监控设备的状态,以方便问题的排查。


单击右下角的"关于"可以看到 CypCutPro 软件的详细版本信息。

1.4操作流程

1.4.1 导入图形

单击界面左上角快速启动栏的打开文件"运"按钮,弹出打开文件对话框,选择您需要打开的图形。打开文件对话框的右侧提供了一个快速预览的窗口,帮助您快速找到您所需要的文件。

如果您希望通过 CypCutPro 软件来现场绘制一个零件,请单击新建 "上"按钮,然后使用左侧绘图工具栏的按钮来画图即可,具体参见相关章节。

❤️封口 ▼ ❤️ 封口 ៚ 缺口 ❤️ 过切

1.4.2 预处理

导入图形的同时,CypCutPro 会自动进行去除极小图形、去除重复线、合并相连线、自动平滑、排序和打散,一般情况下您无需其他处理就可以开始设置工艺参数了。如果自动处理过程不能满足您的要求,可以打开菜单"文件"-"用户参数"进行配置。

一般情况下,软件认为要加工的图形都应当是封闭图形,如果您打开的文件包含不封闭图形,软件可能会提示您,并以红色显示。但是该功能可能会被关闭,要查看绘图板上的不封闭图形,您可以单击常用菜单栏"显示"按钮中"□"和"라"按钮来突出显示不封闭的图形,也可以通过单击工具栏最左侧大按钮"选择",然后单击"选择不封闭图形"来选择所有不封闭的图形。

1.4.3 工艺设置

在这一步中您可能会用到常用菜单栏下"工艺设置"一栏中的大部分功能,包括设置

引入引出线、设置补偿等。大尺寸按钮"^{31线}"可以用于设置引入引出线,按钮"³¹⁶"用于设置过切、缺口、封口或多圈参数;按钮"³¹⁶"用于进行割缝补偿;按钮"³¹⁶"可将单个图形反向;按钮

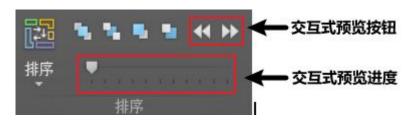
" 》 为却点 " 用于在图形中设置冷却点。单击 " 道起点" 按钮,然后在希望设置为图形起点的地方单击,就可以改变图形的起点,如果在图形之外单击,然后再在图形上单击,就可以手工绘制一条引入线。

作为快速入门教程,您可以按下 Ctrl+A 全选所有图形,然后单击"引线"按钮,设置好引线的参数,然后单击确定,软件会根据您的设置自动查找合适的位置加入引入引出线。单击"引线"下方的小三角,选择"检查引入引出"可以进行引入引出线的合法性检查,选择"区分内外模"可根据内外模自动优化引线。

单击右侧工具栏的""按钮,可以设置详细的切割工艺参数。"图层参数设置"对话框包含了几乎所有与切割效果有关的参数。

1.4.4 切割路径规划

在这一步中根据需要对图形进行排序。单击常用或排样菜单栏下的排序"³¹"按钮可以自动排序,单击排序按钮下方的小三角可以选择排序方式,可以控制是否允许自动排序过程改变图形的方向及是否自动区分内外模。


如果自动排序不能满足要求,可以单击左侧工具栏上的"短"按钮进入手工排序模式,以鼠标依次单击图形,就设定了加工次序。按住鼠标,从一个图向另一个图画一条线,就可以指定这两个图之间的次序。

将已经排列好次序的几个图形选中,然后单击常用或排样菜单栏下**群组**"按钮"按钮就可以将它们的次序固定下来,之后的自动排序和手动排序都不会再影响"群组"内部的图形,"群组"将始终作为一个整体。

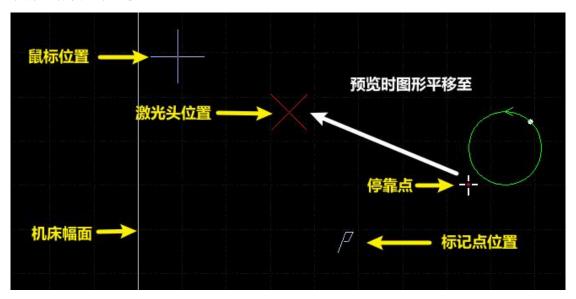
选中一个"群组",然后单击右键选择群组内排序,也可以对群组内部的图形进行自动排序。

1.4.5 加工前检查

在实际切割之前,可以对加工轨迹进行检查。拖动如下图所示的**交互式预览进度**,可以快速查看图形加工次序,单击**交互式预览按钮**,可以逐个查看图形加工次序。

单击"控制台"上的" 模拟 "按钮,可以进行模拟加工,通过" 数控 "分页上的"模拟速度"功能可以调节模拟加工的速度。

1.4.6 实际加工


请注意,这一步必须要在实际的机床上才能运行,必须要控制卡的支持。

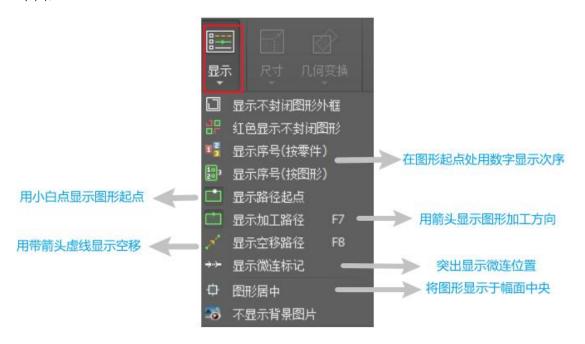
在正式加工前,需要将屏幕上的图形和机床对应起来,单击"控制台"上方向键左侧

的"^{预览}"按钮可以在屏幕上看到即将加工的图形与机床幅面之间的相对位置关系。该 对应关系,是以屏幕上的停靠点标记与机床上激光头的位置匹配来计算的。下图显示了屏

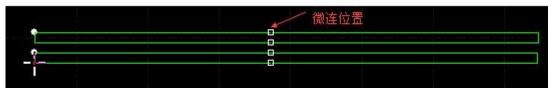
幕上常见的几种坐标标记,单击"预览"时"停靠点"将平移到"激光头位置",视觉上图形整体发生了平移。

如果红色十字光标所示的"激光头位置"与实际机床上的激光头位置不符,请检查机床原点位置是否正确,通过"数控"—>"回原点"可进行矫正。如果预览后发现图形全部或部分位于机床幅面之外,则表示加工时可能会超出行程范围。

屏幕上检查无误后,单击"控制台"上的" " 按钮,软件将控制切割头沿待加工图形的最外框走一圈,您可以借此检查加工位置是否正确,在常用菜单栏点击"生成包络线"后单击" " ,可用于加工不规则余料板材时的加工位置检查。还可以通过单击" " 按钮在不打开激光的情况下沿待加工图形完整的运行,借此更详细地检查加工是否可能存在不当之处。


单击"按钮可以中止加工,根据您的设置,激光头可以自动返回相应点。只要您没有改变图形形状或开始新一轮加工,单击"一川断点定位"按钮,软件将允许您定位到上次停止的地方,单击"加入断点继续"按钮将从上次停止的地方继续加工。

二、图形操作


2.1图形显示效果

常用菜单栏下第一个"<u>查看</u>"分栏"**显示**"提供了多项帮助控制显示效果的按钮,如下图:

单击上图中的按钮,显示效果立即生效,您可以在绘图板中看到显示效果的变化。请注意按钮本身的显示变化,深灰底色时为开启状态,表示对应效果已开启,否则表示对应显示效果尚未开启。例如,开启状态"",绘图板上用箭头显示图形加工路径,关闭状态"",图形上的箭头消失。

"显示微连标记"开启后,您可以在图形上清楚地看到微连的位置(白色矩形标记),如下图所示:

在选中图形时单击"^中图形居中"按钮时,所选图形将显示在幅面中央,没有选择任何图形直接单击,则整体图形显示在幅面中央。

单击**"**查看"分栏右下角的"■"可以打开一个对话框,对绘图板进行更为详细的控制,包括**开启和关闭关键点自动吸附,开启和关闭标尺**,控制鼠标拾取精度等。

在绘图板上滚动鼠标滚轮可以缩放视图,按下 F3 在屏幕上居中显示全部图形,按下 F4 在屏幕上居中显示机床幅面范围。在绘图板上单击鼠标右键->缩放可以选择上述几种操作。

2.2选择图形

CypCutPro 提供了丰富的图形选择方式。最基本的操作是"点选",在图形上单击鼠标即可选中图形。另一种更常见的操作是"框选",拖动鼠标在屏幕上形成一个半透明的选框来选择图形。"框选"分为两种,*从左向右*拖动鼠标时,显示实线框蓝色半透明矩形,只有完全覆盖在矩形框内的图形才会被选中;*从右向左*拖动鼠标时,显示虚线框青色半透明矩形,只要图形的任何一部分位于矩形框内,图形就会被选中。

这两种选择的示意图如下。左图为从左向右选择,BC将被选中,右图为从右向左选择,ABCD都将被选中。灵活使用这两种方式可以更加方便的选中您需要的图形。

无论"点选"还是"框选",如果在选择的同时*接下Shift 键*,则可以在不清除原有选择的情况下新增或取消选择图形。

单击"选择"按钮,会出现一个下拉菜单,通过它可以进行高级选择操作,包括:

- 基础操作:全选(Ctrl+A)、反选、复制(ctrl+c)、粘贴(ctrl+v)、剪切(ctrl+x)、删除、取消选择(可点击空白区域实现)、带基点复制(选择一个点,粘贴时图形与鼠标位置关系和基点与原图形位置关系相同)
- 图形操作:选择不封闭图形,选择相似图形,选择所有外模或内模,选择所有小于指定尺寸的图形(需要在软件下方的绘图信息栏里面输入指定的尺寸)
- 图层操作:选择图层(用于选择一个图层里面的所有图形)、锁定背景。
- **二** "禁止快速拖动和复制"勾选后将不再允许用户拖动、复制、旋转图形,从而避免使本已排好的图形由于误操作发生错位。

其中"**选择相似图形**"允许您选择绘图板上所有大小相同的图形,例如先选择一个 5mm 的圆,然后单击"选择相似图形"就可以选择所有 5mm 的圆;

2.3 几何变换

常用菜单栏下"几何变换"分栏部分提供了丰富的几何变换功能,使用前先选中想要变换的图形,大部分常用几何变换只需要单击"几何变换"下拉三角形即可完成,例如镜像、旋转、对齐、缩放等。

2.3.1 尺寸修改

CypCutPro 提供了 7 项快速尺寸变换,通过"尺寸"按钮下的下拉菜单完成。单击"尺 寸"按钮下的小三角,可以打开一个下拉菜单,提供了对选中图形进行一定尺寸变化的操

例如"100mm"将图形等比例缩放为宽度 100mm, "2倍"将图形等比例放大 2倍。 如果希望输入精确的尺寸,请单击编辑尺寸或直接单击"尺寸"按钮,将出现如下的 对话框,输入新的尺寸,单击"确定"即可完成尺寸变换。

> 修改尺寸 X

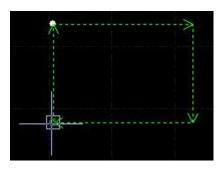
设置图形尺寸

本功能用于修改选中图形的尺寸。

请输入新尺寸:	21.153mm	<u> </u>	3.961mm V
常用尺寸:	请选择		~
缩放中心 ● 左上	OŁ	〇右」	E
〇左	〇中	〇右	
〇左下	一 不 〇	〇右下	

入长度和宽度,点击"一般"按钮可以解除锁定状态,按钮变为"一个"状态。

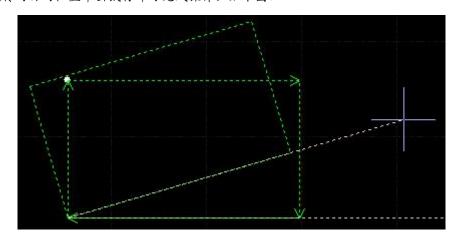
"缩放中心"可以指定缩放之后新图形与原图形的位置关系,例如选择"左上"则表示变换之后新图形与原图是按照左上角对齐的,其他部分则以左上角为基准进行缩放。


请注意:为图形设置的引入引出线、割缝补偿等并不会同时进行变换,修改尺寸后引入引出线和割缝补偿的数值仍然保持不变。

2.3.2 交互式几何变换

CypCutPro 提供了 3 种交互式几何变换,包括交互式缩放、任意角度旋转和任意角度镜像,通过它们可以实现更细致的几何变换。在进行这些操作之前,首先选中要操作的图形,然后单击相应的菜单或按钮,然后根据屏幕下方的提示进行操作。

例如一个矩形,以其左下角为基准旋转 45°,可以按照如下步骤进行:


- 1) 首先选中要操作的矩形。
- 2) 然后单击"几何变换"下方的小三角打开下拉菜单,选择"任意角度旋转",屏幕下方提示"请指定基点:"。
- 3) 移动鼠标到矩形左下角、鼠标将会自动吸附到左下角、如下图:

- 4) 单击鼠标,屏幕下方提示"请指定旋转起始点或旋转角度:"
- 5) 这时候直接输入45,回车即可完成操作。

如果事先并不知道旋转角度,而是希望将矩形旋转到与另一个图形对齐,那么前 4 步同上,从第 5 步开始按如下步骤进行:

- 6) 将鼠标移动到矩形的右下角,单击鼠标,此时将形成一条水平线,作为旋转的起始线。
- 7) 屏幕提示"请指定旋转目的点",这时候移动鼠标,图形将会跟随鼠标旋转,在希望 旋转的目的位置单击鼠标即可完成操作。如下图:

交互式缩放和任意角度镜像的操作与此类似,这里不再赘述。

2.3.3 快速平移和复制

CypCutPro 软件允许您用方向键快速平移图形,使用该功能需要先单击点亮软件界面右下角的"微调"按钮,由 微调 10 状态变为 微调 10 状态,只有在点亮状态下,右侧数字框才可以进行编辑。点亮"微调"按钮后,选中图形,按下任何一个方向键,图形将向对应方向平移一个距离,该距离参数在"微调"按钮右侧的数字框中输入。此功能可以帮助您临时快速移开某个图形,然后专注于其他图形的设计,之后再快速地移动回原处,由于微调距离参数可以精确控制,您不必担心图形位置发生偏差。在按下 Ctrl 键的同时按方向键,将会复制选中图形。例如按下"Ctrl+向右→"将会在右侧 100mm 处复制一份选中的图形。

2.4坐标和参数输入

有些情况下,我们希望以精确的坐标方式来绘图。CypCutPro 允许您直接输入坐标,坐标输入的格式是<X 坐标><3333 英文逗号,><Y 坐标>,例如输入坐标(100, 100),输入"100, 100"即可。输入的坐标和参数以蓝色显示。

大部分绘图操作既允许鼠标操作,也允许直接输入坐标。下面演示绘制一个长 300mm, 宽 200mm, 倒 25mm 圆角的圆角矩形。

- 1) 单击左边工具栏中"□ 圆角矩形"图标,屏幕提示"请指定起点"
- 2) 输入坐标"0,0"回车,屏幕显示"请指定对角点"
- 3) 输入坐标 "300,200" 回车, 屏幕显示 "请指定圆角半径或[倒角(F)]:"
- 4) 输入50回车。全部操作完成。如下图所示。

```
命令: 新圆角矩形
请指定起点:
0,0
请指定对角点:
300,200
请指定圆角半径或[倒角(F)]:
50
完成
```

2.5 自动吸附

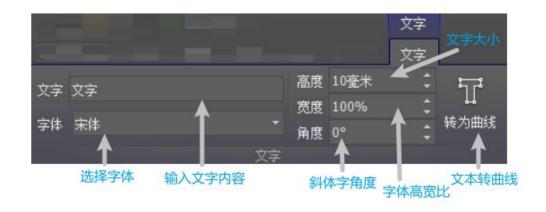
绘图过程中 CypCutPro 会根据需要提供自动吸附功能,包括自动吸附到网格,吸附到图形的关键点,吸附到图形边界等。

您可以关闭自动吸附功能,操作步骤是单击"^{文件}"菜单,选择"用户参数",在打开的对话框中选择"绘图板"选项卡,取消"^一启用自动吸附"、勾选。自动吸附的精度同样在上述对话框中设置。

2.6 图形绘制

CypCutPro 提供图形的绘制功能,在左侧工具栏中间部分,从上到下依次为:孤立点、直线、多段线、圆形、圆弧、矩形、多边形、文字、标准零件,在上方菜单栏绘图模块中也有此部分。其中除去后 2 个,前 7 个功能为标准图形绘制,和 CAD 的功能类似。

2.6.1 标准图形绘制

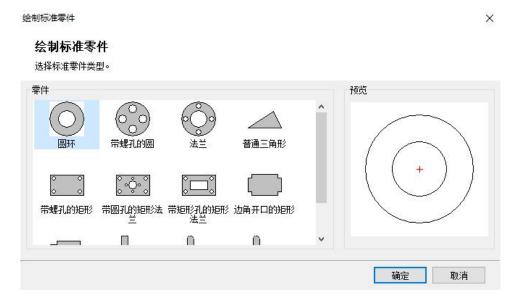

孤立点、直线、多段线、圆形、矩形的操作简易明了,此处不再详细赘述。值得一提的是: "绘图"分栏中的"圆"的下拉菜单中有 2 个功能: "替换圆形定位孔为孤立点"和"替换为圆"。前者可将尺寸较小的圆变成孤立点,后者可以把类似为圆的图形转化为圆,便于后续进行飞行切割。

多边形功能点击下方三角,分为矩形,圆角矩形,多边形和星形。其中圆角矩形需先绘制一个矩形,再通过移动光标确定圆角半径,或者直接在绘图信息栏输入圆角半径;多边形和星形均需先指定边数(3 到 100),多边形为正多边形,可旋转;星形的边数为星形的顶角数,6 条边即为六角星。此外,在菜单栏绘图模块,"矩形"的下拉菜单中,额外有一个"跑道形"功能,同矩形的绘制方式,在矩形的左右两侧添加半圆即生成跑道形。

2.6.2 文字输入

CypCutPro 支持输入文字和文本转曲线。单击左侧绘图工具栏上的"字"按钮,标在希望插入文字的位置单击鼠标即可插入文字,新插入的文字被自动选中。

任何时刻选中文字,工具栏将出现一个新的分页"文字",通过它可以对文字的内容、 样式、大小等进行修改。如下图:



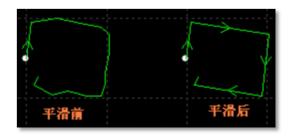
请注意,一旦将文本转为曲线,上述选项就不可再使用。如果您希望做出特定字体、 特定效果的文字,请先设计好之后再转为曲线。

2.6.3 标准零件

CypcutPro 提供标准零件的绘制。点击左侧绘图工具栏上的"☑"按钮,即可绘制常用的零件。选择零件类型后,可在下一级页面设置相关参数。如下图所示:

2.7 图形优化

导入外部图形时 CypCutPro 会自动对图形进行优化,如果您需要手工对图形进行优化,可使用常用菜单栏下"优化"按钮的功能,如下图所示:



选择要处理的图形,单击相应的按钮,然后根据提示操作即可。

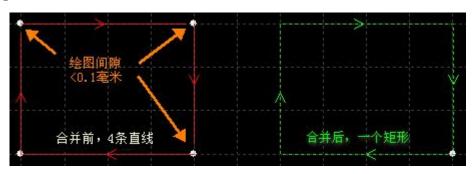
2.7.1 曲线平滑

右图为原有的曲线和曲线平滑后的曲线对比。为便于观察效果,这里输入的拟合精度 数值较大,实际使用时请用户根据自己需要的加工精度进行拟合。

2.7.2 曲线分割

曲线分割是将封闭图形打断,变成两个图形,用户可以分别对这两个图形进行编辑。 单击" 曲线分割 "按钮,在需要分割的位置单击鼠标。曲线分割过程可以连续进行, 直到 ESC 取消命令或切换为其他命令。

2.7.3 去除重复线

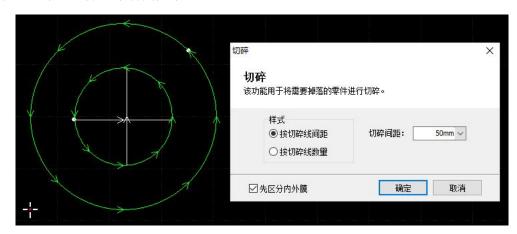

此功能用于将视觉上重合的图形剔除到只留下一条,单击"去除重复线",将会对所有图形进行搜索和清理。

2.7.4 去除小图形

有时候导入的图形中可能包含视觉上难以察觉的图形,导致显示尺寸很小,或者加工时移动到一个异常的位置。可以用"去除极小图形"功能删除这类图形,单击工具栏上的"去除小图形"按钮,设定图形尺寸范围,然后确定。小于该尺寸的图形将被删除,其他图形被保留。

2.7.5 合并相连线

使用 AutoCAD 绘制的图形经常包含视觉上连接,但事实上并不相连的图形,通过合并相连线可以将它们合并。选择要合并的图形,然后单击 "合并相连线",输入合并精度,确定。



请注意,视觉上的图形终点不一定是几何上的图形终点,可能在终点处存在多余的原路返回的线,这些图形需要通过"曲线分割"先拆分,删除多余的图形,然后再合并。

2.7.6 切碎

对于"内模"图形,可以使用切碎功能生成切碎线,防止废料翘起,影响加工。切碎线以白色显示,区分正常切割图形。

2.8视图

视图模块可以调整图形的缩放、显示位置和排序,也可编辑图形。功能入口位于左侧 工具栏上方和菜单栏最后一项"视图","视图"里可对系统语言、快捷栏选项、系统单 位选择等进行自定义选择。

三、工艺设置和工具

本章介绍 CypCutPro 提供的工艺设置相关功能,由于大部分工艺参数都和被切割的材料、使用的激光器、气压等有直接的联系,所以请根据实际工艺要求进行设置。这里提到的所有的参数,包括图片中的参数,仅作为示例,不应该被认为是指导参数。

警告!不恰当或错误的参数可能导致切割效果变差甚至损坏机床,请谨慎设置。

3.1引入引出线

3.1.1 区分内外模与阳切/阴切

打开 DXF 等外部文件时,CypCutPro 会自动区分内外模。如果在编辑过程中对图形做了更改,导致内外模关系发生了变化,需要再次区分内外模时,请单击"排序"按钮,任何一种排序方式都可以区分内外模(需要勾选"排序时区分内外模",此选项位于排序按钮的下拉菜单里,默认勾选),或是直接单击"引线"按钮下拉三角形,选择"区分内外模"。

CypCutPro 是按照包围关系来区分内外模的,始终将最外层作为外模,外模的下一层为内模,内模下一层再外模,依次类推,不封闭的图形不能构成一层。如果希望从某一层开始为阳切,可以选择从这一层开始以及内部的所有图形,将它们群组,然后通过"群组内排序"区分内外模。

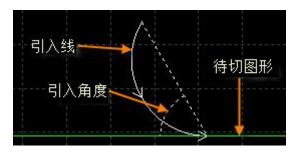
在添加引线时,外模为阳切,从外部引入,内模为阴切,从内部引入。要手工设定阴

首阳切

切、阳切,请选择要设定的图形,然后单击常用菜单栏下的"空阴切"按钮。

3.1.2 自动引入引出线

选中需要设置引入引出线的图形,然后单击常用菜单栏下的"图标,在弹出的窗口中设置引入引出线的参数,如下图:

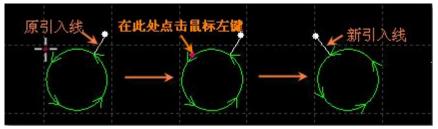


支持的引线类型包括圆弧和直线以及直线加圆弧,支持的参数包括引线类型、角度、长度和半径。您也可以选择是否在引入线起点加入小圆孔。

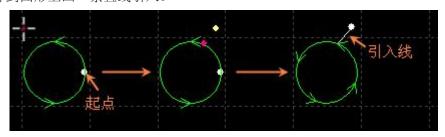
确定

取消

当选择圆弧引入时,无论设置的角度多大,圆弧的末端将保持与待切图形相切,如右图。此时设置的角度事实上是引线起点与终点的连线与待切图形之间的夹角。引出线与此类似。



请注意,自动选择合适的引入位置,将会对图形按预先设置的优先项点或优先长边以确定引入位置,因此图形之前的引入位置、类型等参数都将被覆盖。若您对引线位置有固定要求,可选择按照图形总长设定统一的位置或不改变引线位置,只改变类型选项。



3.1.3 手工设置引入线

单击工具栏上的"**超**起点"按钮,可以手工修改引入线。在图形上单击表示修改引入 线的位置,但不修改角度和长度。

先在图形外单击(点 A,黄色的点),然后在图形上单击(点 B,红色的点),则表示 从图形外到图形上画一条直线引入。

3.1.4 检查引入引出线

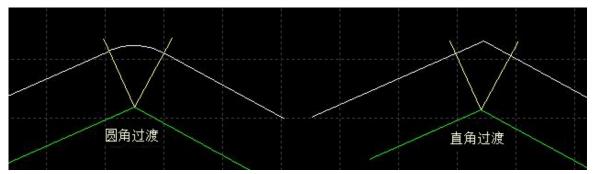
单击"引线"按钮下的小三角,然后选择"检查引入引出"可以对已经设置的引入引出线进行合法性检查,该功能会将长度太大的引线缩短,从而避免与其他图形交叉。单击"区分内外模"则可根据已设定的内外模确定引线的具体位置。

3.1.5 过切、留缺口、封口和多圈

✓封□ ▼ [✓ 封□✓ 缺□✓ 过切✓ ◇爾

常用菜单栏下"工艺设置"中有四个可供选择的按钮" ³⁸ " 依次用于设置封口、缺口、过切、多圈。选择需要设置的图形,然后单击相应的按钮即可。对"缺口/过切"大小的设置只对之后再设置缺口/过切时有效,此前已设置的缺口/过切大小仍然保持不变。

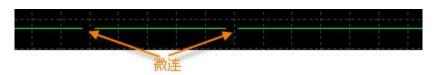
3.2割缝补偿


选中要补偿的图形,然后单击工具栏上的"一些补偿"按钮进行割缝补偿。

割缝宽度应根据实际切割结果测量获得,补偿后的轨迹在绘图板中以白色表示,加工时将已补偿后的轨迹运行;经过补偿的原图将不会被加工,仅在绘图板中为方便操作而显示。

割缝补偿的方向可以手工选择,也可以根据阳切、阴切自动判断,内模内缩、外模外扩。

割缝补偿时可以选择对拐角以圆角还是直角过渡,如下图所示:


图中绿色为原图,白色为补偿后的轨迹,淡黄色为从原图拐角处所作的垂线。从图中可以看出垂线两侧补偿之后可以保证割缝边缘与原图重合,但拐角处则需要过渡。通常圆角过渡能保证在过渡过程中割缝边缘仍然与原图重合,并且运行更加光滑。

为方便选择,可在常用配置下编辑常用补偿数值。

要取消补偿,请选择需要取消补偿的图形,然后单击"清除"按钮,选择"取消补偿"或直接选择割缝补偿下"取消补偿"按钮。

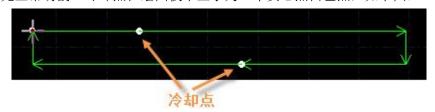
3.3 微连

"微连"用于在轨迹中插入一段不切割的微连接,可避免切割完成后零件翘起。切割 到此处时激光将关闭,是否关闭气体和跟随则由切割时短距离空移的相关参数决定。微连 在绘图板中显示为一个缺口,如下图:

单击工具栏上的"学》微连"按钮,然后在需要加入微连的图形处单击就可以添加一个微连,连续单击来插入多个微连,直到按下 ESC 取消或切换为其他命令。不仅可以在图形上单击,也可以在经过补偿后的轨迹上单击来插入微连。

微连的长度设置请在软件下方的绘图窗口直接输入,新的参数对设置之后的操作生效。除了手工添加微连,CypCutPro 也提供了自动微连功能。单击"微连"按钮右方小三角形下"争"自动微重"按钮,在弹出的对话框中设置参数,然后确定。可以选择按数量,例如每个图形加入 10 个微连,或者按距离,例如每隔 100mm 插入一个微连。

微连可能将图形分成几段,若想对分开后的部分作单独修改,可单击"微连"按钮下 拉菜单的"炸开微连"按钮,经微连处理分开后的不封闭图形将被视作单独的个体供修改。 如果想在微连部分增加引线,就需要先"炸开微连",再添加引线。

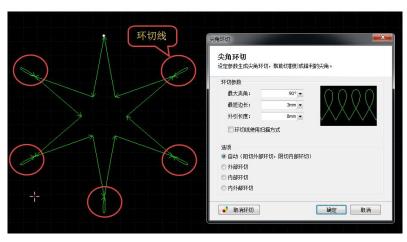

要删除微连,请选择要删除微连的图形,然后单击"清除"按钮,选择"清除微连"。

如果没有使用穿孔工艺,并且在全局参数勾选了"微连使用飞行切割",则会使用飞切方式切割微连段,运动到微连的起点关光,不开光运动到微连结尾处再开光,中间无任何加减速过程,**Z**轴也不上抬,整体提高微连切割的效率。

3.4冷却点

单击常用菜单栏下"^{一"冷却点}"按钮,在图形相应位置上单击,即可在该位置设置一个冷却点。切割执行到冷却点后将关激光,并根据全局参数中冷却点相关设置延时吹气,之后开激光正常切割。冷却点在绘图板中显示为一个实心点白色点,如下图:

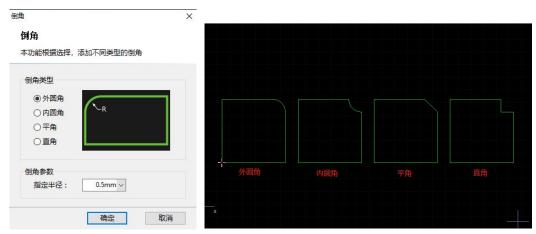
同微连一样,冷却点也可以连续单击来插入多个。在进行微连、补偿等工艺后依旧可 以添加冷却点。

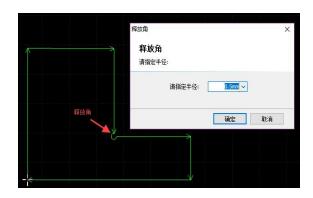

除了可以手动添加冷却点,CypCutPro 也提供了自动冷却点功能。单击"冷却点"按钮右侧小三角后选择"自动冷却点"按钮,在弹出的对话框中设置参数,然后确定。可以自动添加冷却点的有引入点和尖角,添加在引线结尾的冷却点将成为引线的一部分,而非一个单独的冷却点,会跟随起点位置的改变而移动、删除而清除,"清除冷却点"功能对其无效。

要删除冷却点,按住 Shift 并单击冷却点即可删除。如果想删除所有冷却点,可单击"冷却点"按钮右侧小三角后选择"清除冷却点",即可删除已经设置的所有冷却点。

冷却点常在拐角工艺中使用,在拐角处稍作暂停关光吹气冷却,防止烧角。

3.5环切


选中图形后,单击工具栏上的"平环切"按钮,可以实现更好的尖角切割效果。



3.6倒圆角/释放角

单击工具栏上的"**倒圆角**"按钮,可在拐角处将尖角转化为各种类型的倒角,包括内圆角、外圆角、平角与直角。

单击工具栏上"释放角"按钮,可以生成释放角,有助于下一道折弯工序。

3.7群组

CypCutPro 中的"群组"是指将多个图形,甚至多个"群组"组合在一起形成一个"群组",整个"群组"将会作为一个整体被看待,"群组"内部的次序、图形之间的位置关系、图层都被固定下来,在排序、拖动等操作时其内部都不会受到影响。

选择需要组成群组的图形,然后单击"鞘"按钮就可以将所选择的图形组合为一个群

组。如需打散群组,请选择群组图形,此时原先"群组"按钮变为"^{‡‡}"按钮。如需打散 绘图板上的所有群组,请单击"群组"下方的小三角,然后选择"打散全部群组"。

"打散"并不会将任何曲线拆散,只能将已群组的部分打散。而"炸开图形"会将图形炸开成一条一条的线段。

"多轮廓共切群组"会将零件的轮廓相连,减少穿孔次数。群组相连后按"炸开多轮廓共切群组"可以将其打散。

如果"群组"中有一个图形能包含其他所有的图形,则称为外轮廓。具有外轮廓的"群组"可以被认为是一个"零件"。

虽然 CypCutPro 软件允许将任意的图形进行群组,并作为整体进行操作,但是这里仍然建议用户"逻辑性"的使用群组功能,尽量只将符合"零件"逻辑条件的图形执行群组。今后我们可能会不加区分的使用"群组"和"零件"这两个术语。

请注意, CypCutPro 软件对"共边"的图形始终进行群组,以确保这些图形的完整性。 另外,将一个"群组"和其他图形或"群组"执行桥接,结果必定是一个"群组",同样 为了确保图形的完整性。

3.7.1 群组的排序

零件在排序时作为一个整体,以外轮廓或第一个图形为基础参与排序,零件内部的图 形次序在排序中不会改变。

如果需要在不打散群组的情况下对群组内部图形进行排序,可以选中群组,右键单击, 然后选择"群组内部排序"。

"群组内部排序"操作不会改变群组内的子群组中图形的次序。"群组内部排序"的次序只和图形的几何特性有关,与所属图层无关,排序过程根据几何包含关系自动区分内外模。

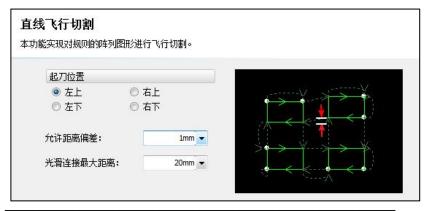
3.7.2 群组的加工

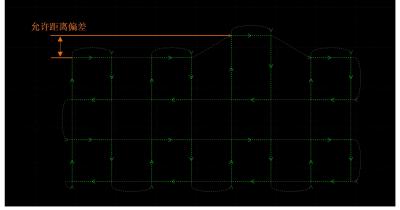
群组(零件)在加工时作为一个整体,连续加工完成,加工过程中不会插入其他图形,即使群组(零件)包含多个图层的图形,它们也是连续加工的。群组预穿孔也遵循这个规律。

请注意,无论零件内部的图形次序如何,零件的外轮廓始终是最后加工的,请在加工 之前先进行排序。

3.8飞切

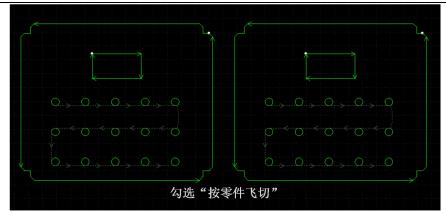
当待切割图形是规则的图形(如矩形、整圆、多边形)且呈一定规律性排列时,通过扫描切割将同方向的线段连起来进行飞行切割,将大大提高切割速度,节省切割时间。


进行飞切切割之前,建议用户先对需要飞切的图形进行排序,此操作可以优化扫描切割的路径,节省空移时间。

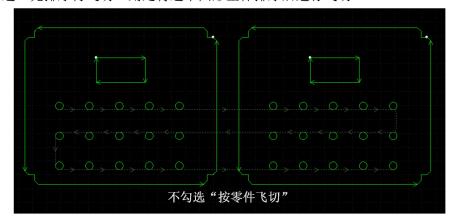

3.8.1 直线飞行切割

单击常用菜单栏下"³⁰⁰"按钮(注意: 当规则阵列的组成图形全部是圆时,该按钮功能为圆弧飞行切割)或下拉菜单中"直线飞行切割"选项,进入直线飞行切割参数设置界面。

起刀位置用于设置扫描切割的起点位置;光滑连接最大距离是指小于此设定值的转向间距可以采用光滑连接;两条平行线的距离小于允许距离偏差则会生成飞切线。保留原图微连则可以保证在生成飞切线时,不会自动清除原图上的微连,从而避免飞切时零件翘起碰头。

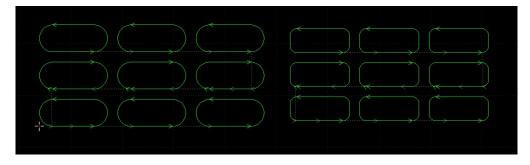


3.8.2 圆弧飞行切割


当规则阵列的组成图形全部是圆时,直接单击"飞切按钮",即为圆弧飞行切割功能,或单击"飞切"按钮下拉菜单中的"圆弧飞行切割"选项,进入圆弧飞行切割参数设置界面。

飞行连接两圆最大间距是指两圆可以间隔的最大距离,若加工图形中圆间距大于设定值,则无法设置飞行切割。

"先排序再飞切"可将圆弧整体排序后再进行飞切,如果同时勾选了"按零件飞切",则按排序规则对每个零件内部飞切之后再按零件进行切割。



若只勾选"先排序再飞切"则是将选中图形整体排序后进行飞切。

3.8.3 跑道形飞切

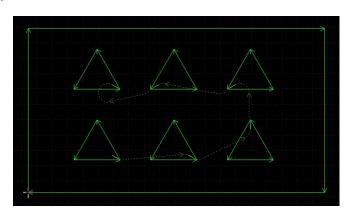
对圆角矩形和跑道形的图形可以使用跑道形飞切功能生成飞切线。

对于圆弧飞切和跑道形飞切,勾选上保留原图微连后则不会自动清除原图上的微连。

3.8.4 一笔画飞切

对不规则的图形,可以使用一笔画飞切功能生成飞切线。

圆弧飞切线最大半径: 飞切线换向过渡时使用的最大半径,推荐使用默认值 3mm。

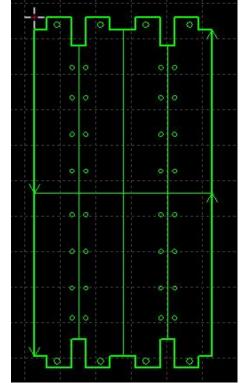

分组数: 对密集内孔排序时自动划分的栅格组数。

最大飞行线长度: 两个相邻图形支持的最大飞行线长度

按零件飞切: 只会在零件内部生成飞切线,勾选后不会跨零件生成飞切线

引入线飞切: 一笔画飞切支持设置引线后再生成飞切线,勾选"允许修改引入线位置"后,会自动调整起点位置,达到生成更多飞切线的目的。

保持原排序: 勾选以后,在生成飞切的时候不会自动排序,一般只在特殊需要保留内轮廓顺序时才勾选。



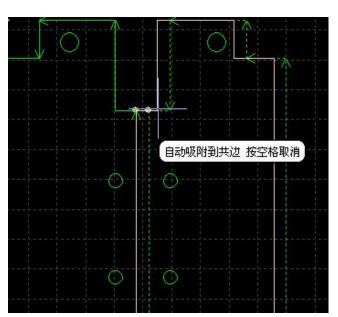
3.9共边

将具有相同边界的工件合并在一起,共用一条边界,可以大量节省加工长度,提高效率。在CypCutPro中,当两个图形之间的边界距离小于 0.01毫米时可以共边,并且 CypCutPro 提供了自动吸附的功能用于将两个图形拖动到一起进行共边。

选择需要共边的两个或多个图形, 然后单击工

具栏上的"^{井边}"按钮,CypCutPro 就会尝试对所选

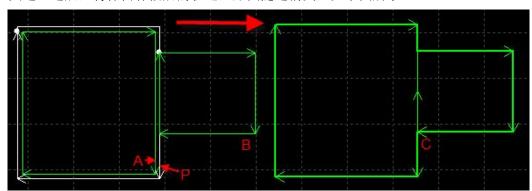
择的图形共边,如果所选择的图形不满足共边的条件,界面左下方的"绘图"窗口将会显示提示信息。


目前 CypCutPro 只支持对图形的四周进行共边,对图形内部凹陷处的直线不能进行共边。 共边之后参与共边的图形将被组合为一个"群组"。如果参与共边的图形内部包含其 他图形,如小圆孔,请先将图形和内部所有图形组合为一个群组,然后再共边,否则内部 的图形和共边后的群组之间的关系将变得没有意义,加工次序和内外模关系上也将难以确 定。

3.9.1 共边自动吸附

在 CypCutPro 中拖动图形时,如果移动到可能共边的位置,

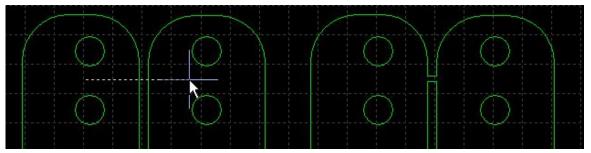
CypCutPro 将尝试自动吸附并显示相应的提示信息。您可以非常简单的将需要共边的两个图形拖动到一起,当两个图形接近时,自动吸附功能会帮助您快速定位。甚至是选中许多图形一起拖动时,同样可以快速定位。


一旦将两个图形靠在一起且具 有相同的边界,只需选中它们并按下 "共边"按钮即可完成共边。如果您

希望对已共边的零件拆开来继续编辑,或者是设定它们的次序,请选择零件,然后单击常用菜单栏下的"打散",编辑完成之后可以通过"群组"按钮再次合并它们。

3.9.2 带补偿的共边

如果您希望在共边之后仍然保留割缝补偿,请先对需要共边的图形执行补偿之后,再执行共边。任何情况下,"共边"保持加工轨迹不变,如果被共边的图形包含补偿,那么"共边"之后,将保留补偿后的轨迹,原图随之消失,如下图所示。


事实上,上图中,原图 A 不能和图 B 的共边,只有补偿后的轨迹 P 和图 B 才能共边。即便将图 B 移动到和图 A 相邻,仍然不能共边,因为图 A 不是要加工的轨迹。

3.10 桥接

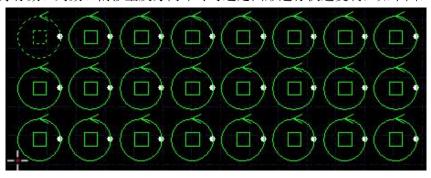
当一个工件由多个部分构成,但又不希望切割之后散落,就可以通过"桥接"将它们连接起来。同时,这一功能还能减少穿孔次数。多次使用"桥接"功能,还可以实现对所有图形"一笔画"的效果。

要将两个图形桥接,请单击"桥接"按钮,然后在屏幕上画一条直线,所有与该直线相交的图形都将两两"桥接"起来。如下图:

桥接需要指定桥接的宽度。

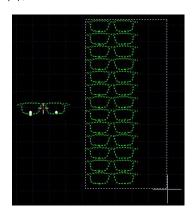

请注意,桥接之后图形将变为一个整体,在"一笔画"全部切割完成之前,可能任一个零件都未切割完成,应该特别注意由此带来的热影响变化。

3.11 阵列


"阵列"命令可用来快速、准确地复制一个对象,CypCut 提供了四种阵列方式。

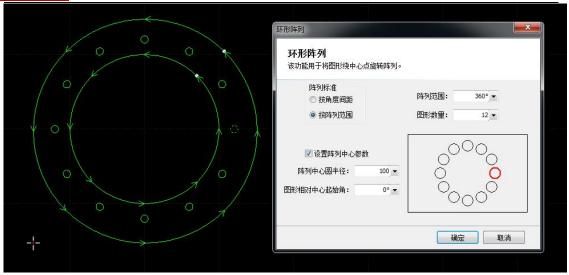
3.11.1 矩形阵列

单击"^{阵列}"按钮或"阵列"下拉菜单中"矩形阵列",出现如下图所示参数界面:

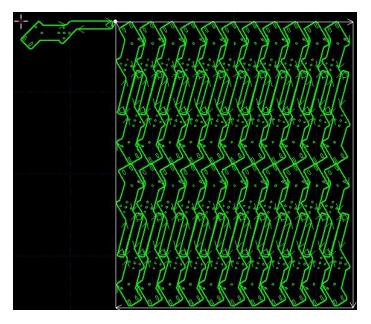


设定好行数、列数、偏移量及方向即可对选定图形进行快速复制,如下图:

3.11.2 交互式阵列


单击"交互式阵列",设置好行间距和列间距,即可通过鼠标拖动划定区域,对选中 图形进行快速阵列复制。如下图:

3.11.3 环形阵列

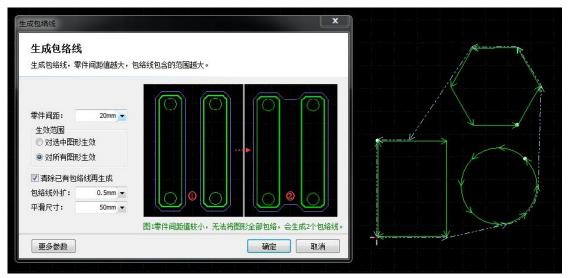

环形阵列可以快速的将图形绕中心点旋转阵列

3.11.4 布满排样

布满排样主要用于单个图形的整板切割,单击"布满排样",软件将按照给定的零件、参数和板材进行快速的布满排样。布满效果如下图:

3.12 切断线

当余料不规则,使用点动切割或者一键切断无法实现理想切断效果的时候,可以通过 切断线方式来进行灵活切断。


选中曲线以后单击"按钮可以将曲线设为切断线,切断线默认使用最后加工图层。使用切断线功能时,请留意工艺参数是否设置正确。CypNest 的余料线导入 CypCutPro后会自动设置为切断线。如下图所示,曲线显示为黄色且带"菜刀"标志时,则代表该曲线为切断线。

在切断线下拉菜单,可以将曲线取消设为切断线

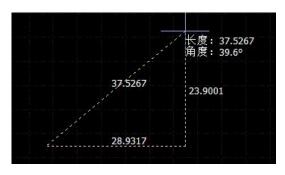
3.13 包络线

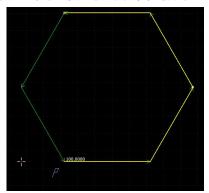
在加工图形最外侧生成一个包络线轮廓(下图紫线),搭配走包络线功能可以实现更 精准的加工前检测,可以检测不规则板材的加工区域是否超出了板材区域

零件间距: 在零件间距范围内的零件会一起生成包络线,如零件间距值设置过小,则包络线所包围的零件会比较少,建议设置值大于实际零件间距。

包络线外扩: 设置值越小,包络线外扩值越小。

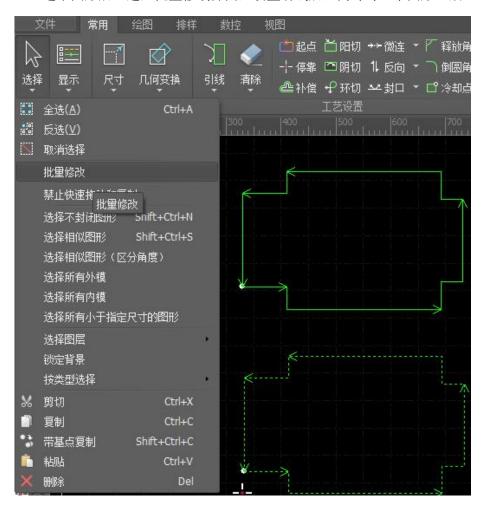
平滑尺寸: 设置值越小,包络线越贴近于零件。


在包络线下拉菜单可以将已有的包络线清除。


3.14 测量

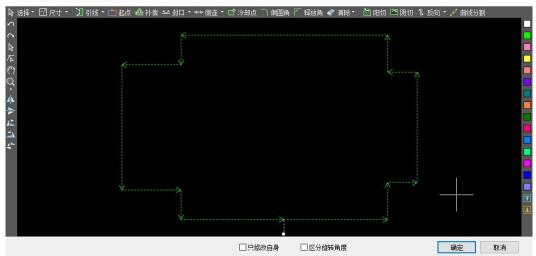
CypCutPro 提供了直线测量和曲线测量两种工具。

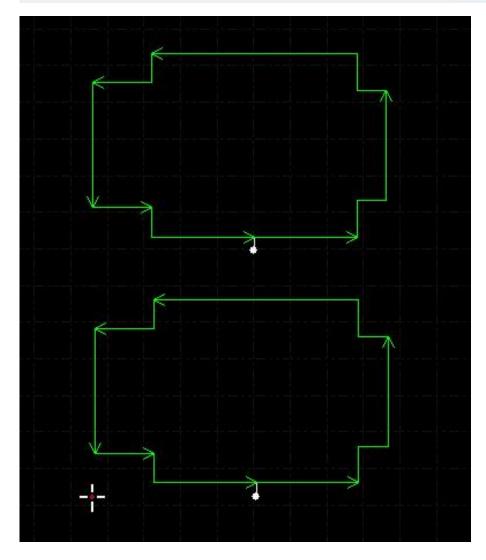
直线测量用于两点之间的测量,可以显示长度、角度、X方向距离、Y方向距离。


曲线测量可以一次测量多段曲线的长度,如下图黄线所示。

3.15 批量修改

对于相似图形的工艺修改,可以使用"批量修改"功能提升作图效率,以下图为例: 选中图形后,进入批量修改界面,设置引线后,同时对三个图形生效。





同步修改

同步修改

修改一个图形,并将修改应用到其他相似图形上。

3.16 工艺参数

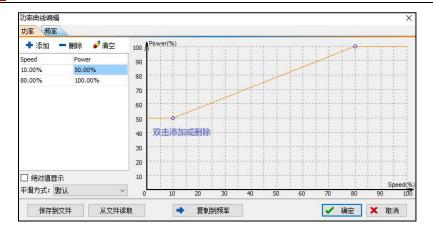
CypCutPro 提供了 16 个图层,每一个图层都可以单独设置包括切割速度、激光功率、 气压、喷嘴高度等工艺参数。其中,最后两个图层分别是最先加工和最后加工图层。

单击常用菜单栏下的" 按钮,可以打开"图层参数设置"对话框,该对话框包含了加工时所需的几乎所有工艺参数。对话框的第一页是"全局参数",用于控制图层之外的参数,包括运动控制参数,激光和气体的默认参数,跟随控制参数等。对话框的其他页面列出了当前用到的所有图层,单击每一个图层,可以单独设置该图层的所使用的工艺。

请注意: "图层参数设置"对话框中的内容可能因使用的激光器不同、气体管路配置不同、使用的调高器不同等而显示不同的选项,上图仅供参考,请以您软件显示的实际为准。

3.16.1 参数说明

下表对图层中的部分参数进行了简要说明。


了。 				
① 基本参数				
设置实际切割的目标速度。由于在切割轨迹的首末段及拐弯处				
存在加减速,往往实际的切割速度小于该速度。				
② 加工方式				
按照设定参数标准加工。				
切割头固定在一定高度进行切割。				
选择该方式时起刀点可以停靠在板外,实际切割时在板外部分激光				
头会停留在"参照高度"切割,检测到入板后跟随切割。常用于切				
断板材。				
"参照高度"的设置方式是将激光头点动到合适的高度,然后在"数				
控"-"BCS100E"-"记录板外跟随高度"路径进行参数保存。				
③ 加工参数				
设置切割时喷嘴距离板材的高度。				
设置切割时所使用的辅助气体类型。				
设置切割时辅助气体的气压,需与比例阀或多气阀配合使用。				
设置光纤激光器的峰值功率。峰值功率决定了机器所能达到的				
最大切割功率,3000W的切割机,若峰值功率设置成80%,那么切割				
时所能达到的峰值功率为 3000W * 80% = 2400W。				
设置加工时采用的 PWM 调制信号的占空比。				
设置 PWM 调制信号的载波频率,也就是 1 秒内的出光次数,该				
值越大表示出光越连续。				
焦点距离切割头喷嘴嘴尖的位置。				
用于烧穿板材的延时,使穿孔更充分。				
用于关闭激光前确保切割完全的一个延时。				
设置穿孔结束后不出光只吹气的时间,使板材冷却。				
该图层工艺不进行加工。				
该图层切割时不使用调高器进行跟随运动。				
加工时不关闭气体				
在实际轨迹切割之前先在图形的起点(或者引线起点)提前穿				
孔。CypCutE 提供了自动分组预穿孔,可以在全局参数中开启该选项。				
沿切割轨迹使用带膜参数执行一遍去膜切割,再按图层参数进				
行正常加工。选择此项后将出现去膜参数设置页面。				
单个图形正常加工后,沿原轨迹关光开气加工一遍,辅助工件				
快速冷却,减少热胀冷缩效应对工件精度的影响。选择此项后将出				

现冷却参数设置页面。				
⑤ 起刀工艺				
起刀距离	设置开始切割时在轮廓起点后的起刀距离			
起刀速度	设置起刀距离对应的切割速度			
	⑥ 收刀工艺			
收刀距离	设置结束切割时在轮廓终点前的收刀距离			
收刀速度	设置收刀速度。			
	⑦ 功率曲线			
实时调节功率/频率	启用该功能后,您可以自定义功率/频率曲线,加工时软件会根			
	据曲线实时调整激光功率(PWM 信号的占空比)及频率,对优化拐			
	角的切割质量有较大帮助。注意:选择实时调节频率则必须选择实			
	时调节功率。			
	⑧ 精密切割			
精密切割	启用精密切割后,可以对单独的图层设置低通频率,加工加速			
	度,曲线精度,拐角精度。低通频率值越小,对机床的冲击越小。			
曲线精度、拐角精度值越小,加工精度越高。				
	9 无感穿孔			
无感穿孔	对于中薄板,可以使用无感穿孔功能。既能保证高效的加工效			
	率,又能延长保护镜的使用寿命。			
	① 无痕微连			
无痕微连	无痕微连相对于普通微连,下料更轻松			
	① 振动抑制			
振动抑制	推荐使用自适应振动抑制功能,切割系统会根据切割工艺参数			
	自动进行振动抑制。			

3.16.2 实时调节功率/频率

如果选择了"**②实时调节功率②实时调节频率**",在切割过程中占空比与频率将会随速度变化而变化,具体的变化值由功率/频率曲线决定。您可以单击"**曲线编辑**"按钮来编辑功率/频率曲线。

如上图所示,功率/频率曲线图的横坐标为切割速度,纵坐标为切割功率/频率,单位为百分比。您可以添加相应速度时对应的功率点并选择曲线的平滑方式,还可以通过单击

"**专制到频率**"将功率曲线复制一份到频率曲线。通过该表可以反映当实际运动到拐弯处速度下降至目标速度的百分之几时,实际功率/频率需要下降至切割功率/频率的百分之几。注意:选中实时调节功率后实时调节频率才有意义。

例如,如果激光器功率 500W 设定切割速度为 100mm/s,峰值电流 90%,切割功率 80%,则当实际切割速度下降到 45mm/s,激光器的功率为:

激光器功率 X 峰值电流(百分比) X 切割功率(百分比) X 随速功率调节(百分比) X =500W X 90% X 80% X 75.00%= 270W

但是无论功率如何下降,都不会低于一个事先设定的最低值,一般是 **10**%,即 **500W** * **10**% = **50W**。

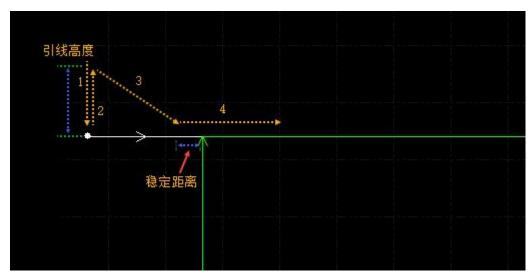
如果没有选中"☑**实时调节功率☑实时调节频率**",则切割过程中功率将保持不变。以上面的例子,则切割过程中的功率为 500W X 90% X 80% = 360W

3.16.3 图层映射

单击常用菜单栏下"工艺"按钮下拉三角形,可根据提示选择锁定与显示特定图层。 当导入 DXF 文件存在多个图层时,单击"DXF 图层映射"可查看图层与对应图形数量。如 下图:

3.16.4 引线工艺

加工厚不锈钢时,穿孔过程会产生大量的等离子云,这些等离子云会吸收激光的能量,降低切割能力,而且喷嘴在切割高度下很难将其吹除。因此必须采用特殊的引线工艺,穿


孔完成之后,切割头先在高处将等离子云吹散,同时水平方向的加工通过降速来弥补高度过高带来的气流损失,保证切透板材.

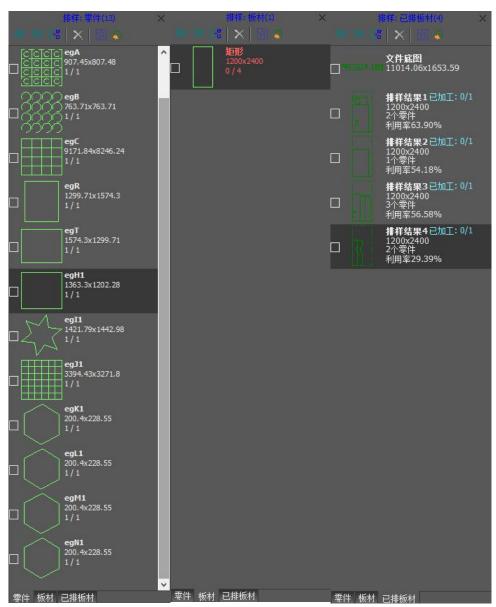
在切割厚板时,可以在图层参数单独设置引线工艺,包括切割引线的速度功率,引线 缓降的高度和稳定距离。

☑ 引线工艺		☑ 引线缓降	☑ 引线圆	
切割速度:	10 V mm/s	引线高度: 10 ~ 毫米	速度: 10 v mm/s	
占空比:	50 ~ %	稳定距离: 2 ~ 毫米		
频 率:	5000 V Hz	(缓降结束点距离加工起点距离)		

引线切割动作说明:

- 1. 先在引线起点执行穿孔动作;
- 2. 穿孔结束后上抬到引线高度;
- 3. Z 轴开始缓降至切割高度,同时 XY 轴使用引线切割速度慢速切割至稳定距离位置:
- 4. 在切割高度切割稳定距离之后开始切割轨迹。

3.17 排样


排样功能用于将给定的零件以最高利用率合理排布在板材上。CypCutPro支持一键排样,同时也提供了多项优化参数供您进行细微调节,比如:零件间距、板材留边、旋转角度、

自动共边等。单击常用分页或排样分页中的"排样"按钮以实现这一功能。

3.17.1 实现排样

使用排样功能后,软件左侧会出现排样侧边栏,可以显示零件库、板材库和已排板材。

零件库会以缩略图的形式显示所有需要进行排样的零件,可以通过选中图形后右键**添加到零件库**或者在左侧侧边栏右键导入零件的方式来添加零件。目前零件库支持的零件种类上限是50种。此外,左侧侧边栏右键还可以选择导入标准零件、删除所有零件以及保存未排样零件。

板材库可以显示板材种类和数量,可以通过选中图形后右键添加到板材库或者使用标准板材的方式来添加板材。此外,左侧侧边栏右键可以删除所有板材或将其保存至文件。

已排板材会显示进行自动排样后的排样结果,已经加工完成或者修改了排样结果的板 材都会在缩略图中提示。目前的算法仅支持最多对20张板材进行排样。

自动排样需要设置一些参数。"零件间距"指零件与零件之间会留出不小于设置大小的间距;"板材留边"参数指定了零件排样留出的板材边框;"排样策略"是指程序计算排样结果时使用的策略,目前仅支持阵列式。

进入详细设定以后,可以进行更丰富的设置,包括旋转角度、排样方向、共边的设置。

3.17.2 排样报告

在左侧侧边栏的已排板材右键,选择**报告信息**设置排样和报价相关信息,完成后再次 右键选择**生成报告**,会弹出工艺界面,您可以设置基本的加工信息用于价格预估,设置完 成后会显示排样报告结果。如下图所示:

排样汇总信息

2018-08-22 11:35:43

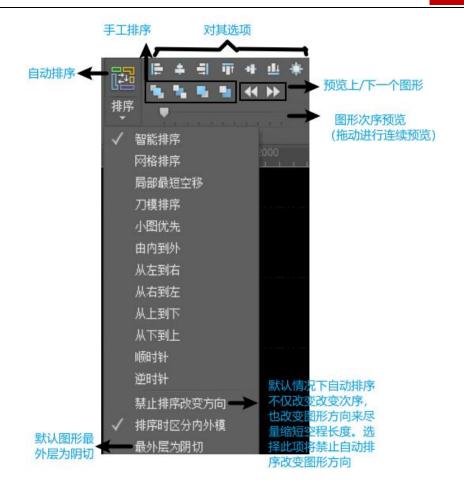
板材信息

序号	缩略图	尺寸(nm*nm)	零件数量	切割总长	空移总长	预计加工时间	数量
1		1200.00 x 2400.00	20	28891.64mm	12928.68nm	6分41.4秒	1

零件信息

字号	零件名称	治略图	尺寸(mm*mm)	零件总数	排样數量	利余数量	己加工
1	20180822A		187.00 x 187.00	10	10	0	0
2	20180822B	(\neg)	187.00 x 187.00	10	10	0	0

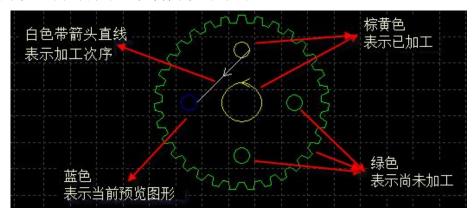
价格信息


	价格(元)	数量	总价(元)
板材单价(/m2)	20.00	2.88	57.60
切割单价(/m)	2.00	28.89	57.78
工时单价(/h)	50.00	0.11	5.50
穿孔单价(/个)	5.00	0	0.00
合计			120.88

3.17.3 排样自动切换至下一张

打开 nrp 或者 nrp2(CypNest 排样软件生成的加工任务)后,会在左侧列出所有的排样结果,并显示已加工和应加工次数。在完成一次加工后,已加工计数会加一。当达到应加工次数后,会自动跳转至下一张图纸。

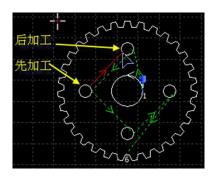
3.18 排序和路径规划


您可以在工具栏"绘图"分页中找到如下图所示的分栏,列出了排序的所有功能,并且在上部还有用于图形对齐的工具,见下图:

有关群组排序的规则参看"群组"一节,若无特殊要求,推荐选择"智能排序"方式。

3.18.1 次序预览

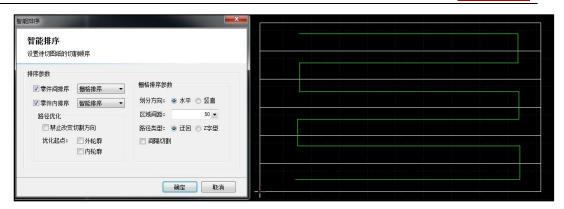
拖动"图形次序预览"的进度条,或者单来尽量缩短 击" ★★★ "按钮可以对加工次序进行预览。下图演示了一个零件预览时的画面:


次序预览是完全交互式的,比模拟加工更容易控制,也可以在想仔细观察的位置放大并反复向前向后预览。打开常用工具栏下"显示"按钮下拉三角形中的"**水**"按钮可以显示全部空移路径,帮助查看整体加工次序。

3.18.2 手工排序

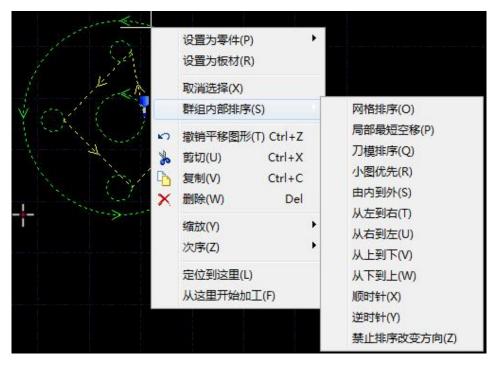
移到最前	14,	将选中图形移动到第一个加工
移到最后	*	将选中图形移动到最后一个加工
向前一个	-	将选中图形加工次序向前移动一个
向后一个	-	将选中图形加工次序向后移动一个

请注意,无论怎么移动,图形的次序都只能在其所属的图层内变化,图层之间的整体次序在"图层参数设置"对话框中调整,参见"工艺参数"一节。


除了微调方式的手工排序之外,还可以通过"手工排序模式"更直观的进行手工排序。单击主界面左侧工具栏上的"接到"按钮,进入"手工排序模式",屏幕上将自动打开空移路径和图形次序数字显示。按照您希望的次序,依次用鼠标单击就可以设定图形加工次序。如果不小心点错了,只要从错误的地方再单击或右键取消。如果只想调整两个图形之间的次序,可以按住鼠标从一个图画一条直线到另一个图就可以设定这两个图之间的次序。如下图。

3.18.3 智能排序

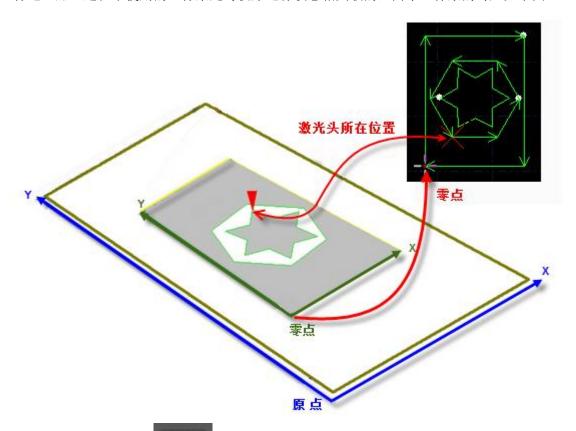
使用智能排序时,会根据设置的参数自动划分栅格,在栅格内会根据最短的空移路径 生成排序。如下图所示,白色区域是自动划分的栅格区域,绿色线条则是迂回的排序路径。



3.18.4 分区排序

当某一部分的次序排好之后如果希望固定下来,可以选择需要固定次序的图形,然后单击"群组",之后它们之间的次序将保持不变,后续的手工排序和自动排序都不会对群组内部造成影响。请注意,群组之后,群组内的所有图形将从第一个到最后一个连续加工完成,其间不会加工非本群组内的图形。

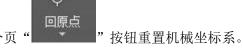
如果希望只对某一部分的图形进行自动排序,而不要影响其他部分,也可以通过群组 完成。将需要自动排序的图形选中,单击"群组",然后右键单击群组,选择"群组内部 排序"。



四、加工控制

CypCutPro 是一套设计和加工控制一体的软件,在前述所有图形及参数准备都可以脱离 机床进行,全部设计完成之后可以将文件保存,然后到机床上打开文件进行加工。

4.1坐标系


图形设计过程中使用的"模型坐标系",是与机床无关的,其零点在屏幕上由"制"标记。加工过程中使用的坐标系是与机床运行状态相关联的,两个坐标系的对应如下图:

单击控制台上的"按钮",就可以在屏幕上显示图形与机床幅面之间的位置关系。

4.1.1 机械坐标系

机床坐标系是由机床结构及机床参数唯一确定,任何时候通过单击"回原点"所建立 的坐标系都是一致的,初次装机或当机械坐标系由于异常原因发生偏差后可单击"数控"

不管使用什么机械结构,CypCutPro 对坐标系的定义都是一致的。所有的运动都是激光头相对于工件的运动,激光头向右为 X 正向,激光头向后为 Y 正向,也就是工件(钢板)的左下角为最小坐标,右上角为最大坐标。

4.1.2 程序坐标系

由于机床坐标系是固定不变的,为了方便使用,需要引入工件坐标系。CypCutPro 中所有的程序坐标系各坐标轴方向都与机床坐标系完全一致,只有坐标系零点不同,称为程序零点。程序坐标系分为浮动坐标系与工件坐标系。

控制台最上方的按钮用于程序坐标系选择,可选择"浮动坐标系"、9个"工件坐标系"及一个"外部坐标系"。

浮动坐标系一般用于灵活加工,可认为"激光头移动到哪里就从哪里开始加工",其 坐标系零点在用户在点击"走边框","空走"或者"加工"时自动设置为激光头当前位 置。

选择**工件坐标系** 1~9 时,其零点由用户手工通过"设置当前点位零点"来设置,一旦设置永久保存,直到下次再设置。因此工件坐标系适合于批量产品生产,其位置一般由固定夹具决定,使用工件坐标系 1~9 可以保持每次加工都在机床的同一个位置进行。

单击底部状态栏 " X:0.000 Y:0.000 ▼ "

可以选择显示机械或是程序坐标,还可以在这里 设置两个坐标系的零点。选择"坐标定位"将把切割 头定位到指定坐标位置。

4.1.3 发生异常后寻找零点

情况一

如仅仅是激光器或辅助气体等外设发生异常,导致加工被迫中断,并没有导致坐标系

偏移。可直接点击"————",回到零点。

情况二

如突然掉电,伺服报警等将导致机械坐标系发成偏移的异常发生后,建议用户执行"回

情况三

如遇意外情况导致加工被迫中断,但是误操作按下了开始键,如果您还希望能找到上次加工的零点,可以通过定位到记忆零点返回上一次加工的零点位置。

在控制台的标记坐标的下拉菜单里面选择"记忆零点",然后点击"返回标记"。

4.2报警

机床运行过程中 CypCutPro 会对所有部件进行监测,一旦监测到报警,就立即以红色标题栏显示,并采取停止运动等措施。在软件报警未消除之前,大量的操作都将被禁止,请检查机床直至报警消除之后再操作。报警示例如下图:

除标题栏之外,界面左下方的"报警"窗口也会显示报警信息。报警消除之后标题栏的红色显示会消失,"报警"窗口中的信息则被保留下来。双击"系统"窗口可以打开查看全部历史记录,从而了解软件运行过程中发生的事件。

除报警外,如果 CypCutpPro 检测到其他运行异常时,将会根据异常级别,以不同颜色在"系统"窗口显示,包括警告、提醒、消息等。这些信息不会导致机床停止运动,但仍然建议您及时关注软件显示的各类消息,以便尽早采取必要措施。

报警可以自动解除或手动解除,可在"平台配置工具"中勾选所有报警需要手动解除。 以下为部分报警拥有的限制:

- 急停后切断伺服使能(防止意外的供能)
- 📮 调高器报警禁止 XY 运动(此处强调:Z 轴目前状态不明确,XY 移动有碰板风险)
- □ 急停后 Z 轴也被禁止运动(真正进入停止状态)
- □ Z下限位报警,不允许空移或者点动(同 2,防止碰板)

4.3 手动测试

控制台手动控制部分功能如下图所示:

带有"②"图标的按钮,在相应的设备打开之后将会变成"②"样式。其中"按钮是按下开启激光,放开关闭激光,形成点射;其他的按钮则是按下切换,放开不执行任何动作,例如"吹气",按下吹气,再次按下则关闭吹气。根据激光器的不同,"光闸"。在按下后可能会过一段之间才会变成"②"样式,此状态时从激光器读取而来的。"红光"按钮按下后,使激光器发出红光。

请注意,所有的按钮动作都需要机床上对应的部件支持,如果机床并没有配置这些部件,或者平台参数配置不正确,部分按钮可能会无效。

单击"^{标记坐标}"可以记录机床当前位置,之后当需要的时候,单击"^{返回标记},可以返回之前记录的位置。总共可以记录 6 个位置,由"^{标记1}"选择。

4.4 软限位保护

为了保护机床,CypCutPro 内置软限位保护,可以平台配置工具中高级参数的

" 」 启用软限位 " 选项开启和关闭,默认开启。

启用软限位保护之后,如果软件检测到运动可能超出行程范围,就会提示"运动已超出行程范围",不发出任何运动指令,防止可能发生的撞击。此时请检查图形和机床位置,确认无误之后再操作。

除此之外, 机床运动过程中软件也会实时监测机床坐标, 一旦超出软限位立刻报警, 并停止所有运动。

请注意: 软限位保护依赖于机床坐标系,如果坐标系不正确,保护也将不正确。因此 当软件异常关闭、机床参数修改等操作之后应当通过"回原点"操作建立正确的机床坐标 系!

4.5 走边框

单击控制台上的"^{走边框}"按钮,激光头将沿待加工图形的外框空走一个矩形,以便您确定加工板材需要的大概尺寸和位置。走边框的速度在"图层参数设置"一"全局参数"——"检边速度"中设置。

请注意:如果走边框之前进行过寻边操作,软件将记录寻边结果,走边框时将沿倾斜的矩形运动,即由"寻边"校正之后的实际边框运动,详细参见"寻边"一节。

4.6加工和空走

单击控制台上的"基本并加"按钮开始加工,加工过程中将显示下图所示的监控画面,其中包括坐标、速度、加工计时及跟随高度等信息。

显示上图画面时,将不能切换到工具栏的其他分页,这是为了防止加工过程中修改图形,但"文件"菜单仍然可以使用。在加工过程可以暂停修改工艺参数,暂停修改的参数在继续加工时会立即生效。如果是在加工过程中未进入暂停状态直接修改工艺参数,那修改将会在下一个加工轨迹生效。

单击控制台上的" 按钮可以执行空走,空走与实际加工的区别在于不打开激光、不打开气体,可选择是否开启跟随,所有运行轨迹,包括"预穿孔"的空移、速度及加减速过程等,都和实际加工过程完全一致,而且同样可以进行暂停、继续、前进、后退,包括停止后的断点记忆都与实际加工完全相同,甚至可以在暂停之后修改参数再继续空走。因此空走可以用于在不切割的情况下对整体加工过程进行全面的检查和模拟。

默认情况下加工完成自动停留在终点,如果您希望加工完成返回其他位置,请在控制台上选择所需要的位置,支持的位置包括零点、起点、终点、原点和标记点。

如果取消"加工完成自动返回"相当于返回"终点",即加工完成后原地不动。如果 希望加工完成返回标记点,请选择加工完成自动返回相应标记点并确认。

每加工完成一次,控制台上的加工计数将加 1,达到预先设定的次数后,将弹出对话框提醒,以便控制产量,单击"管理"按钮可以打开加工计数管理界面,控制加工次数、自动暂停等。如需循环加工,请单击" 证 循环加工 "按钮并进行相应设置。

4.7停止、暂停和继续

如需停止加工,请单击加工过程中工具栏上的""或者控制台上的"接钮。

如果暂停加工,请单击加工过程中工具栏上的"如果"或者控制台上的"如果"或者控制台上的"按钮,暂停之后您可以单击右侧工具栏的"工艺"按钮修改参数,也可以操作控制台上手动控制部分的功能,包括激光点射、开关气体、开关跟随等。

如需继续加工,请单击加工过程中工具栏的" "按钮或者控制台的" ¹² ^{44续} "按钮,加工将从暂停处继续。点击" ¹² ¹³ ^{14续} "可以跳过穿孔过程继续加工。

"回退、前进距离: 10毫米 ▼ 50毫米/ ▼ "处设定。

4.8断点记忆

若您在停止后改变了相应参数,控制台上"开始"后会出现"*",当出现"时,断电定位和断电继续功能将不能再被使用。

4.9从任意位置开始加工

CypCutPro 支持从任意指定的位置开始加工,在希望开始的位置右键单击,然后选择"从这里开始加工"。如下图:

为安全起见,选择"从这里开始加工"后,软件将弹出对话框要求再次确认,确认无误后切割头将首先空移到您指定的位置,然后从那里开始加工,所指定位置之前的轨迹将不会被加工。

如果希望先定位到指定位置,但不开始加工,请选择"定位到这里",切割头将空移 到您指定的位置,然后进入暂停状态。

您可以多次右键单击并选择"定位到这里"直至确认无误。也可以通过"

和"」 望 回退 "按钮以更精确的方式定位。

4.10 全局参数

在"图层参数设置"对话框的"全局参数"选项卡中提供了一些运动控制参数可供调整,调整这些参数会对机械运行的平稳性及加工效果、效率产生影响。

下表列出了"全局参数"选项卡的部分参数。

下农列田 1 至				
	空移运动的速度(不是加工的速度)。			
空移加速度	空移运动时,各轴的最大加速度,与空移速度配合使用。			
空移低通频率	空移时的加加速度,与空移加速度配合使用			
检边速度	走边框的速度。			
加工加速度	轨迹加工时,各轴的最大加速度,与加工速度配合使用。			
加工低通频率	加工时的加加速度,与加工加速度配合使用			
点动加速度	点动运动时的加速度			
点动低通滤波	点动运动时的加速度,与点动加速度配合使用			
	加工至拐角处换向运动的加速度			
曲线精度	加工曲线的控制精度,该值越小,曲线的加工精度越高			
拐角精度 	加工拐角的控制精度,该值越小,拐角的加工精度越高			
T. /= z.c.n.+	默认参数 出光前执行的吹气延时			
开气延时 * * * * * * * * * * * * * * * * * * *				
首点开气延时 担	首次吹气执行的吹气延时			
提前开气时间	在空移过程提前开气的时间			
换气延时	更换气体时,原气体全部排出到新气体充满气路的延时时间。			
冷却点延时	在冷却点进行吹气冷却的时间			
系统延时	伺服响应的延时			
继续时回退距离	暂停后,点击继续,会在加工轨迹上自动回退的距离			
气体冲刷参数 				
冲刷气压	执行气体冲刷时的吹气气压			
吹气时间	单次吹气的吹气时间			
间隔时间	气体冲刷过程的关气时间			
开始时吹气次数	开始加工时的吹气次数			
继续时吹气次数	继续加工时的吹气次数			
	跟随控制参数 			
上抬高度	蛙跳上抬的最大高度			
直接跟随最大高度	每种类型的切割头都有一个能跟随的高度上限,当由于穿孔等需求			
	需要跟随到高于此高度时, Z 轴运动会分 2 步, 先跟随到靠近板面			
	的位置,再上抬。此参数用于设定能跟随的高度上限。			
使用蛙跳式上抬	Z 轴未上抬到位,XY 轴即开始空移,以达到缩短空程移动时间的目 			
	的。			
智能避障蛙跳	会根据加工零件的翘起情况来智能判断蛙跳的起跳高度			
蛙跳起跳高度	蛙跳前先上抬到起跳高度后才开始蛙跳			
最大蛙降距离	开始执行蛙降的距离			
短距离不上抬	当空移长度小于此长度时,空移时调高器不上抬,保持跟随状态。			

柏楚 CypCutPro 激光切割控制软件

不跟随只定位	应用于非金属切割,勾选后,随动不生效,只起定位作用			
短距离不探板	短距离的空移不执行探板动作			
高级				
启用机床保护	将影响机床使用寿命的参数隐藏			
微连使用飞行切割	微连段加工不停顿,使用穿孔工艺后此功能不生效			
默认工艺检测	检测默认工艺参数是否合理			
材质厚度检测	检测工艺参数界面是否设置了材质厚度信息			
启用快速寻边	减少安全寻边的过程			
PLC 时序编辑	编辑 PLC 过程			
穿孔去膜逻辑	设置去膜和预穿孔的切割次序			
飞行切割过切距离	确保飞行切割的图形可以顺利切落的距离			
切断线延伸长度	切割切断线时自动往外延伸的长度			
切断线延伸段速度倍率	切割切割切断线时自动往外延伸的长度处运动速度			
预穿孔后自动暂停	预穿孔后,软件自动暂停。方便预穿孔后,清除穿孔产生的渣			
共边起点穿孔	共边起点全部穿孔,避免板材热变形后,共边起点不穿孔直接切割			
	损伤保护镜			
不关气保护气压	图层参数勾选不关气后空移过程的吹气气压			
单位选择	根据使用习惯选择参数的单位。			

五、数控辅助功能

5.1模拟加工

图形的所有排序完成之后,可以通过模拟加工完整的模拟整个文件的加工过程。该过程可以脱离机床进行。模拟过程不仅可以看到图形之间的次序,还可以看到图形内的加工过程。

单击控制台上的"^{模拟}"按钮开始模拟,工具栏将自动跳到"数控"分页,在"数控"分页的第一栏可以调整模拟加工的速度,如下图。

5.2 寻边

CypCutPro 支持电容寻边以及手动寻边两种方式。单击"寻边"按钮下拉三角形,您可以根据自己的条件选择最为合适的寻边方式来确定板材摆放位置。寻边结果将显示在绘图区右上方,如下图:

单击"数控"分页下"寻边""按钮或单击"电容寻边"均可以进入电容寻边界面。

板材尺寸 X 为钢板在机床 X 轴方向的长度;板材尺寸 Y 为钢板在机床 Y 轴方向的长度。 请确保该参数与实际寻边的板材尺寸相匹配,建议设置略小于实际寻边的板材尺寸,错误 的设置存在扎头的风险。

留边距离:寻边的出边的位置一般在板外,寻边结束后会通过边缘校正值将寻边结束后找到的点调整至板内,留边距离设置为正值会将该点再向板内偏移,负值向板外偏移,避免在板材边缘切割引起抖动,如果您已经在排样的时候设置了留边距离,该值可以设置为 0。

自动识别板材尺寸:会根据图形外包围框的大小自动设置板材尺寸。

6 点寻边: 推荐薄板使用,进行 6 次单点寻边动作,有效避免齿尖对薄板寻边造成的干扰。

从寻边起始点开始寻边可使每次寻边都从固定点开始寻边。您可以通过右侧控制台按 钮将切割头点动到合适的起始位置然后保存寻边起始点,**请务必将切割头移到板内作为寻** 边起始点。

从当前切割头停留位置开始寻边即每次寻边都从当前位置开始,**请务必将切割头移动 到板内,确定下方有板才开始寻边**。

若选择"加工前寻边",软件会根据图形停靠点位置在空走或者开始加工前进行一次 电容寻边。

注意: 寻边前请回原点矫正机床坐标系且寻边之前请务必确认切割头可以正常跟随。 钢板倾斜角不应超过 10 度。

寻边界面如下图所示,您可以在此界面设置完参数之后进行手动寻边测试。

点击左下角的"寻边详细参数"可调整相关默认参数,请谨慎使用,推荐使用默认值。

寻边速度对寻边精度有影响,推荐设置值为100mm/s;

寻边跟随高度为寻边过程中切割头跟随的高度,推荐设置值为 4mm;

齿尖间隔为相邻齿条的间隔;

长边两点间距和短边两点间距会决定除了寻边起始点外的两点位置。

5.3一键切断

一键切断功能主要用于沿 X 轴或 Y 轴方向快速切断板材。

薄板一键切断: 勾选以后,入板安全距离生效。

入板安全距离: 运动超过入板安全距离后, Z 轴由定高切割变成跟随切割。

X 方向一键切断(从左往右):点击此按钮之后 X 轴先向左寻边出板,从左往右进行切断动作。

注意: 切断时使用绿色图层的工艺参数。

5.4 PLC 过程

单击"数控"分页下"^{PCQUII}"按钮,您可以自定义PLC过程并执行它们。 注意:不恰当的修改可能导致严重的后果!若有需要请联系我司技术人员。

5.5任务

加工过程如遇到临时插单,加工任务没有加工完的时候可以使用任务功能保存加工任务。程序零点、寻边角度、断点信息、加工图纸都会一起保存。插单加工完后再载入加工任务,断点定位后继续加工就能恢复之前的加工任务。

5.6 回原点

您可以通过单击"数控"分页" " 或选择其下拉选项中"全部回原点"使激光头返回机械原点,重置机械坐标系,详情可见"坐标系"一节。您也可以选择下拉选项中"X 轴回原点"或"Y 轴回原点"使单个轴单独回原点。回原点时,如果勾选了"调高器先回原点"或"电动调焦也回原点",会进行相应的回原点动作。

5.7干涉仪

在具体加工时,若需要将切割头具体定位到某个点,可点击"数控"分页'

按钮,在右图所示的位置输入想要定位的具体坐标。

X: Omm Y: Omm 定位

您也可以在干涉仪界面对激光干涉仪进行相应设置,用来测试软件给出的运动位置与 实际机械运动位置的误差,从而进行机械的误差补偿,又称为螺距补偿。

5.8标定

支持手动标定和一键标定。

5.9 快捷键

下表列出 CypCutPro 常用的快捷键,有些快捷键需要在特定的情况下才能使用的

快捷键	效果	使用条件
Ctrl + A	选择全部图形	无
Ctrl + C	复制图形到剪贴板	选中要操作的图形
Ctrl + Shift + C	指定"带基准点"复制命令	选中要操作的图形
Ctrl + O	打开文件	无
Ctrl + P	显示/隐藏图形方向和空移路径	无
Ctrl + V	粘贴剪贴板图形到绘图板	剪贴板中有复制好的图形
Ctrl + W	适应窗口	无
Ctrl + X	剪切图形到 Windows 剪贴板	选中要操作的图形
Ctrl + Y	重做刚刚撤销的命令	有被撤销的命令
Ctrl + Z	撤销刚刚完成的命令	有执行完成的命令
F2	打开"图层参数设置"对话框	无
F3	查看全部图形	无
F4	查看整个机床范围	无
F7	显示/隐藏加工路径	无
F8	显示/隐藏空移路径	无
DEL(删除)	删除选中图形	选中要操作的图形
SPACE(空格)	重复上一条命令	上一条命令可重复执行